残余应力的几大分类-仪表展览网
筛选
  • 地区
    全部
  • 会员级别
    全部
筛选
  • 截止时间
    全部
残余应力的几大分类
2013/12/27 16:12:02
浏览:6533
残余应力的几大分类:
1、按应力产生的原因分类有:
       (1)  热应力       铸件各部分的薄厚是不一样的,如机床床身导轨部分很厚,侧壁筋板部分较薄,其横向端面如图一所示。铸后,薄壁部分冷却速度快收缩大,而厚壁部分,冷却速度慢,收缩的小。薄壁部分的收缩受到厚壁部分的阻碍,所以薄壁部分受拉力,厚壁部分受压力。因纵向收缩差大,因而产生的拉压也大。这时铸件的温度高,薄厚壁都处于塑性状态,其 压应力 使厚壁部分变粗,拉应力使薄壁部分变薄,拉压应力 ,随塑性变形而消失。 铸件逐渐冷却,当薄壁部分进入弹性状态而厚壁部分仍处于塑性时,压应力使厚壁部分产生塑性变形,继续变粗,而薄壁部分只是弹性拉长,这时拉压应力随厚壁部分变粗而消失。铸件仍继续冷却,当薄厚壁部分进入弹性区时,由于厚壁部分温度高,收缩量大。但薄壁部分阻止厚壁部分收缩,故薄壁受压应力,厚壁受拉应力。应力方向发生了变化。这种作用一直持续到室温,结果在 常温 下厚壁部分受拉应力,薄壁部分受压应力。这个应力是由于各部分薄厚不同。冷却速度不同,塑性变形不均匀而产生的,叫热应力。
在导轨或侧壁的同一个截面内,表层与内心部,由于冷却快慢不同,也产生相互平衡拉压的应力,用类似与上述方法分析,可知在室温下表层受压应力,心部受拉应力,并且截面越大,应力越大,此应力也叫热应力。
(2) 相变应力
常用的铸铁含碳量在2.8-3.5%,属于亚共晶铸铁,由结晶 过程可知①:厚壁部分在1153℃共晶结晶时,析出共晶石墨,产生体积膨胀 ,薄壁部分阻碍其膨胀,厚壁部分受压应力,薄壁部分受拉应力。厚壁部分因温度高,降温速度快,收缩快,所以厚壁逐渐变为受拉应力。而薄壁与其相反。在共析(738℃)前的收缩中,薄厚壁均处于塑性状态,应力虽然不断产生, 但又不断被 塑性变形 所松弛,应力并不大。当降到738℃时,铸铁发生 共析转变 ,由面心立方,变为体心立方结构(既γ-Fe变为a-Fe), 比容 由0.124cm3/g增大到0.127cm3/g。同时有共析石墨析出,使厚壁部分伸入,产生压应力。上述的两种应力,是在1153℃ 和738℃两次相变而产生的,叫相变应力。相变应力与冷却过程中产生的 热应力 方向相反, 相变应力被热应力抵消。在 共析转变 以后,不再产生相变些力,因此铸件由与薄厚冷却速度不同所形成的 热应力 起主要作用。
(3) 收缩应力(亦叫机械阻碍应力)
铸件在固态收缩时,因受到铸型.型芯.浇冒口等的阻碍作用而产生的应力叫收缩应力。由于各部分由塑性到弹性状态转变有先有后,型芯等对收缩的阻力将在铸件内造成不均匀的的塑性变形,产生残余应力。收缩应力一般不大,多在打箱后消失。
2、按照 残余应力 平衡范围的不同,通常可分为三种:
(1)第一类内应力,又称宏观残余应力,它是由工件不同部分的宏观变形不均匀性引起的,故其应力平衡范围包括整个工件。例如,将金属棒施以弯曲载荷,则上边受拉而伸长,下边受到压缩;变形超过 弹性极限 产生了塑性变形时,则外力去除后被伸长的一边就存在压应力,短边为张应力。这类残余应力所对应的畸变能不大,仅占总储存能的0.1%左右。
(2)第二类内应力,又称微观残余应力,它是由晶粒或亚晶粒之间的变形不均匀性产生的。其作用范围与 晶粒 尺寸相当,即在晶粒或 亚晶粒 之间保持平衡。这种内应力有时可达到很大的数值,甚至可能造成显微裂纹并导致工件破坏。
(3)第三类内应力,又称点阵畸变。其作用范围是几十至几百纳米,它是由于工件在 塑性变形 中形成的大量点阵缺陷(如空位、间隙原子、 位错 等)引起的。变形金属中储存能的绝大部分(80%~90%)用于形成点阵畸变。这部分 能量 提高了变形晶体的能量,使之处于热力学不稳定状态,故它有一种使变形金属重新恢复到 自由焓 最低的稳定结构状态的自发趋势,并导致塑性变形金属在加热时的回复及再结晶过程。
残余应力的几大分类
相关资讯推荐